Izdelki za stroji za odrezovanje (16)

CNC obdelava

CNC obdelava

Wir fertigen für Sie auf modernsten Bearbeitungszentren führender Werkzeugmaschinenhersteller. Unter Einbindung modernster CAM Software (CAM Works 2009) und neuester Werkzeugtechnologie im Bereich des CNC–Drehens sowie des CNC-Fräsens von 2,5 D , 3D, 5 Seiten Bearbeitung bis hin zum 5 Achsen simultan Fräsen können wir für Sie tätig werden. So können vom Prototyp bis hin zur Serie stückzeitoptimierte, präzise und maßgenaue Bauteile unterschiedlichster Materialien gefertigt werden. Insbesondere das 5 Achsen simultan gesteuerte CNC-Fräsen und die Einbindung des CNC-Drehens eröffnen Ihnen neue Möglichkeiten in der Gestaltung komplexer Bauteile. Unser 2-schichtiger Betriebsablauf und die CNC-Programmerstellung an unseren CAD / CAM Arbeitsplätzen ergeben kurze Durchlaufzeiten Ihrer Produkte bei höchster Präzision bis ins Detail. Bereits vorhandene 3D Daten können von Ihnen weiterverwendet und geändert werden. • CNC-Zerspanung Einzelteile • CNC-Zerspanung Serie
Laserno graviranje in označevanje

Laserno graviranje in označevanje

Use our online inquiry form to place your request through our website at any time without any additional effort. Simply upload your manufacturing data to our server and deposit the material you require. Repeat accuracy:±2 µm Positioning accuracy:± 25 μm Contour accuracy:± 0.01 mm Minimum pattern width:60µm
Lasersko rezanje električnih listov

Lasersko rezanje električnih listov

Select the material, the quantity and the sheet thickness. If you already have a technical drawing, you can upload it to our server. Wwe only need your contact details to send you an individual offer for laser cutting contract manufacturing! If you need several lamellas, you can simply send off the order form several times.
Lasersko rezanje finih in tankih kovinskih plošč

Lasersko rezanje finih in tankih kovinskih plošč

We offer our customers laser cutting of fine and thin sheets, as well as laser fine cutting of materials with very low material thicknesses (0.02 mm – 4.00 mm) as contract manufacturing. Of course we manufacture from the first sample and also up to mass production. If you do not know whether your material is suitable for processing with the laser, we will be happy to find out for you and provide you with a first demonstration sample free of charge. Material Thickness:from 20 – 4,000 μm finishing:brushing, vibratory finishing, electropolishing Repeat accuracy:± 2 μm Materials:steel / stainless steel, brass, copper, aluminum
Laserko vrtanje

Laserko vrtanje

Laser drilling is a non-chipping drilling technique for producing fine holes in various materials and material thicknesses. Through the targeted use of pulsed laser radiation, the finest drillings in the micrometer range can be realized at high speed. We offer percussion drilling and single pulse drilling, two precise drilling methods for many applications.
Laminirano Jedro

Laminirano Jedro

TEPROSA GmbH has specialized for many years in the manufacture of sophisticated, precisely fitting laminated cores of exceptionally high quality. In the field of electrical steel sheet, we manufacture individual laminations and sheets for stators and rotors, as well as entire sheet packages stator- or rotor packages) from various steel grades. We process grain oriented electrical steel for generators, transformers and other electrical machinery. Our most common method for packaging the individual laminations is baked enamel technology. Alternatives are welding or bolting of laminations. As a long-standing supplier to various OEMs, the quality of our work is particularly important to us. Therefore, we work according to uniform processes and thus ensure consistent quality and complete traceability of each individual production step.
Backlack Tehnologija

Backlack Tehnologija

Baking varnish is a special joining technology for sheet metal packages. After the individual lamellas have been cut, electrical steel with a baking varnish coating is baked into a sheet metal package in a two-stage temperature step. The result is a full-surface, solid connection between the individual sheets with complete insulation. Sheet metal packages manufactured in this way have high precision and perfect magnetic properties. Advantages of the Backlack process: The Backlack process offers several advantages over alternative packaging processes, which we will discuss in detail below. Precision – Sheets coated with baking varnish are baked over the entire surface. This means that even delicate slats can be assembled precisely.
Test temperaturnega šoka in test toplotnega šoka

Test temperaturnega šoka in test toplotnega šoka

We are specialized in performing thermal shock testing of electronic and mechanical assemblies and have a lot of experience with the requirements of the automotive industry and medical technology. On behalf of our customers, we perform environmental and climatic tests according to customer specifications and applicable standards, thus uncovering optimization potential. We will be happy to advise you with regard to your testing tasks and, together with you, transfer the entire testing process into a specification sheet. OUR OPPORTUNITIES 2-chamber system air-air Test chamber volume up to 130 liters Temperature range hot chamber 50°C to 200°C Temperature range cold chamber -80°C to -100°C Change between chambers <15 seconds Maximum test material weight 25 kg State monitoring of the test specimens during the test
Neposredno Strukturiranje z Laserjem (Postopek Lpkf Lds)

Neposredno Strukturiranje z Laserjem (Postopek Lpkf Lds)

We offer laser direct structuring (LPKF-LDS process) for the production of 3D-MID (so-called three-dimensional circuit carriers) as a service in Magdeburg. 3D-MID stands for Mechatronic Integrated Device (or Molded Interconnected Devices). The MID technology makes it possible to use three-dimensional plastic parts as circuit carriers for electronic or mechatronic assemblies. The LPKF-LDS process is one of the technologically leading and at the same time most economically interesting process for the production of 3D-MID. The LPKF LDS process represents the central process step. The process was developed and patented by the company LPKF Laser & Electronics AG in Hanover. Materials:Plastic (ABS, PC / ABS, PC) Repeat accuracy:± 2 μm
Testiranje in Inšpekcija

Testiranje in Inšpekcija

Testing services from a specialist: we are specialized as a testing laboratory for the simulation of specific environmental conditions and the monitoring of the influences of these conditions on electronic assemblies. We offer the following services in our test lab and at your site as contract testing.
Metalizacija Plastike

Metalizacija Plastike

With the help of the 3D-MID process, plastic parts can be metallized not only over the entire surface, but also selectively. To do this, the plastic part is activated with a special laser at the points that are to be coated (this is referred to as laser activation or laser direct structuring). The additives contained in the plastic directly under the plastic surface are “exposed” by the laser treatment. In a chemical bath, copper particles can then be deposited specifically only on the activated surfaces. Other metals, e.g. nickel, tin or gold, can then be deposited onto the starting layer of copper. In this way, a selectively coated plastic part is obtained. MID technology thereby makes it possible to selectively coat two-dimensional and also three-dimensional plastic parts and use them, for example, as circuit carriers for electronic or mechatronic assemblies. With the LPKF-LDS process
Mehatronične Integrirane naprave (Mid)

Mehatronične Integrirane naprave (Mid)

Mechatronic integrated devices or molded interconnect devices (injection-molded circuit carriers) are spatial electronic assemblies – so-called 3D-MID. A special process is used to apply metallic conductor tracks to a specific substrate material (often plastic), thus creating three-dimensional assemblies that also serve as circuit carriers. These spatial electronic assemblies are manufactured using 3D-MID technology and, compared to conventional assemblies, enable the integration of electronic, mechanical, fluidic, optical and thermal functions. The resulting additional benefits represent advantages that cannot be realized with two-dimensional circuit carriers (printed circuit boards).
Merjenje Mehanske Deformacije

Merjenje Mehanske Deformacije

We are specialist in strain gage strain measurements on printed circuit boards and all other components. We carry out the application of strain gages and determine for you the actual stresses that occur, or the strain (also strain-rate) on a specific or several components in the manufacturing or assembly process. We perform our DMS measurements with certified measurement technology and according to the specifications of IPC/JEDEC-9704A. Expert advice from TEPROSA When measuring strain, in addition to many factors such as the appropriate measurement technology, it is also important to rperform the strain measurement correctly and to ensure that the sensors record the forces correctly. To ensure that the deformation of an object is correctly determined, it is therefore crucial to select the right strain gauges (also known as measuring strips) and to place them in the correct position on the measured object.
Shim plošče, shimi, adapter plošče in izravnalne plošče iz tanke pločevine

Shim plošče, shimi, adapter plošče in izravnalne plošče iz tanke pločevine

Shims, or shims sheets / spacer sheets / shims, are used to compensate for tolerances that occur in manufacturing. In this way, components and products in fixture construction, on machines and in automobiles can be compensated for easily, cost-effectively and with high precision.
3D MID tehnologija

3D MID tehnologija

3D-MID are three-dimensional, spatial circuit carriers. The abbreviation MID stands for Molded Interconnect Device, or also for Mechatronic Integrated Devices. The term extension Mechatronic Integrated Devices as opposed to Molded Interconnect Devices (origin Molded = injection molded) is increasingly being used, since the three-dimensional basic bodies are no longer manufactured exclusively through the use of injection molding technology and no longer exclusively from plastic.
Simulacija in ocena okolja

Simulacija in ocena okolja

In an environmental simulation, assemblies are subjected to defined environmental conditions to validate their behavior under those conditions. The variables of an environmental simulation test include climatic aspects such as temperature (cold, heat), the air conditions (humidity, wetness), mechanical influences such as dust, vibration, vibration or impacts, and corrosive environmental effects such as salty lift (salt fog). As an environmental simulation laboratory, we simulate these environmental conditions in our climatic chambers and climatic chambers, creating real conditions to investigate the long-term behavior of the test specimens in reality. Environmental simulation and thermal shock testing laboratory for electronic assemblies and printed circuit boards We specialize in performing environmental simulation and temperature shock testing of electronic and mechanical assemblies. With over ten years of experience with the requirements of the automotive industry and medical